Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2325-2337, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38483087

RESUMO

This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.) is shown to be governed by the ES conditions: the presence of even minor amounts of Hmi in the PHB/Hmi (below 5 wt %) serves as a powerful tool for the control over their structure, performance, and biodegradation. Service characteristics of the PHB/Hmi materials (wettability, prolonged release of Hmi, antibacterial activity, breathability, and mechanical properties) were studied by different physicochemical methods (scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, contact angle measurements, antibacterial tests, etc.). The effect of the structural organization of the PHB/Hmi materials on their in-soil biodegradation at the end of life was analyzed, and key factors providing efficient biodegradation of the PHB/Hmi materials at all stages (from adaptation to mineralization) are highlighted (high surface area and porosity, thin fibers, release of Hmi, etc.). The proposed approach allows for target-oriented preparation and structural design of the functional PHB/Hmi nonwovens when their structural supramolecular organization with a highly developed surface area controls both their service properties as efficient antibacterial materials and in-soil biodegradation upon the end of life.


Assuntos
Materiais Biocompatíveis , Hemina , Animais , Materiais Biocompatíveis/química , Poli-Hidroxibutiratos , Hidroxibutiratos/química , Antibacterianos/química , Estágios do Ciclo de Vida , Morte , Solo
2.
Int J Biol Macromol ; 260(Pt 2): 129514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237825

RESUMO

Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 µm and 1.8 µm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.


Assuntos
Materiais Biomiméticos , Hemostáticos , Camundongos , Animais , Fibrinogênio , Cicatrização , Materiais Biomiméticos/farmacologia , Poliésteres/química
3.
Polymers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896415

RESUMO

In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.

4.
Polymers (Basel) ; 15(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376288

RESUMO

Highly filled biocomposites may be used as biodegradable masterbatches that manufacturers add to traditional polymers for making plastic goods more biodegradable. Biocomposites based on various trademarks of ethylene-vinyl acetate copolymer (EVA) and natural vegetable fillers (wood flour and microcrystalline cellulose) were studied. The EVA trademarks differed both in terms of the melt flow index and in the content of vinyl acetate groups. The composites were created as superconcentrates (or masterbatches) for the production of biodegradable materials based on vegetable fillers with polyolefin matrices. The filler content in biocomposites was 50, 60, 70 wt.%. The influence of the content of vinyl acetate in the copolymer and its melt flow index on the physico-mechanical and rheological properties of highly filled biocomposites was evaluated. As a result, one EVA trademark with high molecular weight that has a high content of VA was chosen because of its optimal parameters for creating highly filled composites with natural fillers.

5.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233539

RESUMO

This work addresses the challenges concerning the development of "all-green" high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%). Structure and performance of the resultant {HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.

6.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177186

RESUMO

Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan.

8.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677989

RESUMO

The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.

9.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236003

RESUMO

Comprehensive studies combining X-ray diffraction analysis, thermophysical, dynamic measurements by probe method and scanning electron microscopy have been carried out. The peculiarity of the crystalline and amorphous structure of ultra-thin fibers based on poly(3-hydroxybutyrate) (PHB) containing minor concentrations (0-5%) of a gene and a tetraphenylporphyrin (TFP) complex with iron (in the form of FeCl) are considered. When these complexes are added to the PHB fibers, the morphology of the fibers change: a sharp change in the crystallinity and molecular mobility in the amorphous regions of PHB is observed. When adding a gel to the fibers of PHB, a significant decrease in the degree of crystallinity, melting enthalpy, and correlation time can be observed. The reverse pattern is observed in a system with the addition of FeCl-TFP-there is a significant increase in the degree of crystallinity, melting enthalpy and correlation time. Exposure of PHB fibers with gemin in an aqueous medium at 70 °C leads to a decrease in the enthalpy of melting in modified fibers-to an increase in this parameter. The molecular mobility of chains in amorphous regions of PHB/gemin fibers increases at the same time, a nonlinear dependence of changes in molecular dynamics is observed in PHB/FeCl-TFP fibers. Ozonolysis has a complex effect on the amorphous structure of the studied systems. The obtained fibrous materials have bactericidal properties and should be used in the creation of new therapeutic systems of antibacterial and antitumor action.

10.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209771

RESUMO

The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm-1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8-30.9%), followed by laboratory conditions (16.0-23.3%), and lowest in Russia (13.2-22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...